Реферат: Специальные варианты высокоэффективной жидкостной хроматографии

Препаративная ВЭЖХ

К настоящему времени не создан единый вариант метода препаративной ВЭЖХ, который обладал бы как большой скоростью и эффективностью разделения, так и высокой производительностью и экономичностью. Поэтому предложены варианты метода, значительно различающиеся по размерам и эффективности колонок, по производительности работы, требованиям к оборудованию и затратам на оборудование, сорбенты и растворители. При выборе оптимального варианта препаративной ВЭЖХ для каждой конкретной задачи. Исследователю приходится сталкиваться с рядом трудностей и проблем.

Первой и основной трудностью является высокая стоимость узко сепаративных сорбентов, особенно привитых, с размером частиц от 5 до 20 мкм. Если с этим можно мириться для аналитических колонок диаметром 2–5 мм, то стоимость резко растет при использовании колонок диаметром 10, 20 или 40 мм и может составить соответственно 200, 800 и 3200 рублей (без учета стоимости металлических колонок и работы по их заполнению). Кроме того, такие колонки достаточно непросто заполнять суспензионным способом.

Вторая трудность–создание хроматографов, насосы которых могли бы подавать растворитель при давлениях 5–20 МПа при расходе 5–100 мл/мин, а инжекторы позволяли бы водить без размывания пробы объемом 0,5–10 мл. Для таких насосов необходимы довольно мощные, дорогостоящие и тяжелые электродвигатели, сложные и дорогие уплотнения, клапаны и т.д.

Третья трудность–необходимость расходования больших объемов растворителей высокой чистоты, что приводит к большим затратам труда и времени на их регенерацию и очистку или к большим тратам на их приобретение. Расход растворителя достигает 10 л и более на 1 г препаративно выделенного очищенного продукта.

Возможно вы искали - Курсовая работа: Методы определения концентрации растворённого кислорода в воде

Наконец, существуют проблемы, связанные с ограниченной растворимостью образца в растворителе, повышенной вязкостью концентрированных растворов, взрыво- и пожароопасностью работы, необходимостью удаления больших объемов растворителей под вакуумом и т.д.

Конечно, все эти трудности возрастают по мере роста масштаба работы и количества вещества, которое нужно препаративно выделить или очистить. Отсюда первое правило: масштаб препаративного разделения должен быть мал настолько, насколько позволяют поставленные задачи.

Многие проблемы, связанные с выделением 1–10 мг чистых веществ для их идентификации современными высокочувствительными физико-химическими методами легко разрешаются на обычных аналитических колонках диаметром 4–5 мм путем многократного ввода проб и сбора фракций. Как правило, для таких работ не требуется никакого специального оборудования, кроме обычного аналитического хроматографа, а сбор фракций осуществляется вручную. Производительность работы можно увеличить без существенного изменения аппаратуры, заменив аналитическую колонку на препаративную диаметром 10–14 мм: как правило, насосы способны подавать до 5–10 мл/мин растворителя, а инжекторы–вводить 0,1–1 мл пробы. Правда, стоимость оборудования увеличивается на стоимость такой колонки, однако и производительность работы возрастет в 4–10 раз. Дальнейшего увеличения количества выделяемого вещества можно добиться уже только при значительном усложнении и удорожании оборудования.

Так, разделить большие количества на аналитическом хроматографе с колонкой диаметром 10–14 мм можно при увеличении продолжительности его работы, чего можно достигнуть путем автоматизации процесса ввода и сбора образца. Для этого хроматограф должен быть оснащен коллектором фракций, автоматическим устройством ввода пробы и компьютером, управляющим их работой. Для некоторых жидкостных насосов предусмотрена возможность установки специальных препаративных головок, иногда с рециклом разделенных фракций, позволяющих использовать эти насосы с колонками диаметром 20–25 мм (при производительности до 20–30 мл/мин) или 35–50 мм (до 100 мл/мин). Соответственно петлевой инжектор должен иметь достаточно широкие внутренние каналы и возможность установки петли размером до 10 мл. Конструкция и геометрия петли должны быть такими, чтобы обеспечивалось минимальное размывание образца при вводе пробы: длинные петли малого диаметра без резких изменений геометрии потока предпочтительней коротких и большого диаметра. Нередко удается заметно улучшить разделение, одновременно уменьшив размывание образца при вводе пробы путем ввода пробы без инжектора, установив вместо него тройник малого Ир объема и вводя пробу вспомогательным насосом высокого ржавления, работающим короткий отрезок времени. Менее удобным способом, дающим сходный результат, является ввод больших проб на колонку шприцем с использованием инжектора с прокалываемой резиновой мембраной, или краном малого объема, однако при этом ввод пробы (из-за ограниченного давления, которое можно создать шприцем даже хорошего качества: около 5 МПа для шприца емкостью 1 мл и около 1 МПа–для шприца емкостью 10 мл) осуществляют при остановке потока (выключении основного насоса).

При использовании колонок большого диаметра (10 мм и более) особое внимание должно быть уделено выбору сорбента. Как правило, дорогие узкодисперсные сорбенты с размером частиц 5 или 10 мкм для широких колонок использовать нецелесообразно из-за высокой стоимости и трудности суспензионной упаковки. Поэтому часто идут на компромиссное решение и используют препаративную фракцию того же сорбента с размером частиц 25–40 мкм или 40–70 мкм, которая выпускается рядом фирм специально для этих целей. Преимуществом такого сорбента является возможность упаковки сухим способом в колонки большого диаметра, более низкая стоимость (в 3–6 раз дешевле) при полном сохранении химической природы поверхности и пористости сорбента, используемого в аналитическом варианте. Кроме того, при работе с более крупным сорбентом требуется значительно меньшее давление, что упрощает работу и позволяет использовать более дешевое оборудование.

Похожий материал - Учебное пособие: Белки и нуклеиновые кислоты

Выпускают также сорбенты для препаративной работы с размером частиц 15–25 мкм. Колонки, заполненные такими сорбентами суспензионным методом, имеют высокую эффективность. При использовании непривитого силикагеля, колонок очень большого диаметра (более 20 мм) и при необходимости очистки или выделения очень больших количеств вещества нередко практикуется применение дешевого и доступного сорбента. Часто используют силикагель для ТСХ (фракция 5–40 мкм), который нередко фракционируют седиментацией для сужения фракционного состава (отделяют пылевидные частицы, заметно повышающие гидравлическое сопротивление колонки, и наиболее крупные). Нередко применяют наиболее мелкую фракцию (40–70 мкм), имеющуюся в продаже для колоночной хроматографии. Однако переход на сорбент с другим размером и распределением пор и с несколько другими химическими свойствами поверхности может привести к заметному изменению разделения, удерживания, а иногда даже и порядка выхода разделяемых компонентов. Такие же изменения наблюдаются и при переходе от привитого сорбента одной фирмы к препаративному сорбенту другой фирмы.

Количество образца, которое можно ввести на колонку для препаративного разделения, зависит от многих факторов, и для каждого случая должно определяться экспериментально, предпочтительно с использованием аналитической колонки и растворов образца разной концентрации. В самом общем виде можно сказать, что масса образца, которую можно ввести, составляет от 0,1 до 1 мг на 1 г сорбента при отсутствии заметной перегрузки колонки пробой (снижение эффективности колонки менее чем в 2 раза). Как правило, препаративные разделения проводят при максимально возможной перегрузке колонки пробой, поэтому чем больше α для разделяемых компонентов, тем больше можно перегрузить колонку пробой и тем соответственно больше получить разделенного вещества за препаративный цикл. При разделении простых смесей, когда работают с большой перегрузкой, эффективность препаративных колонок с мелкими узкодисперсными сорбентами по основным пикам быстро падает, но по пикам примесей остается высокой, что позволяет отделять их более четко. При работе с большой перегрузкой эффективность по основным пикам для малоэффективных колонок и колонок средней и высокой эффективности близка. Однако по мере усложнения задачи (более сложные смеси, меньше α) допустимая перегрузка уменьшается и малоэффективные колонки становятся непригодными. они перестают обеспечивать разделение и получение чистых компонентов даже при отсутствии перегрузки.

Растворители, используемые для препаративной работы. должны быть, как правило, перегнанными, профильтрованными и не содержать примесей, так как в процессе выделения образца из фракции упариванием его концентрация (и концентрация примесей, остающихся в нем от недостаточно чистого растворителя) увеличивается в 200–1000 раз. Смена растворителя в препаративной ВЭЖХ с колонками большого диаметра и уравновешивание колонки с новым растворителем обычно достаточно длительны, сопровождаются большим расходом растворителей, поэтому работу надо планировать так, чтобы делать это по возможности редко. Раствор образца определенной концентрации должен быть приготовлен на основании экспериментов, выполненных на колонке с таким же сорбентом, но меньшего размера: вводят пробы растворов разной концентрации и объема и выбирают соотношение, позволяющее нагрузить колонку наибольшим количеством образца при достаточном для сбора препаративных фракций в чистом виде разделении. Раствор образца должен быть тщательно профильтрован и не содержать взвесей твердых частиц, в том числе и выпадающих в процессе его хранения до конца препаративной работы. Целесообразно для предохранения колонки от возможного загрязнения такими частицами ввести в систему фильтр малого объема между инжектором и препаративной колонкой. Нужно стараться проводить всю препаративную работу в максимально сжатые сроки, предохраняя раствор образца и собранные фракции от длительного контакта с воздухом, светом и повышенной температурой. Чем ниже температура и меньше срок хранения раствора, чем быстрее отгоняется растворитель от собранных фракций, тем чище получаются собранные вещества и легче вся дальнейшая работа с ними.

Особое место в препаративной ВЭЖХ занимает эксклюзионная хроматография макромолекул. Этот метод используют в предварительном варианте для выделения целевых веществ или их групп из смесей, содержащих компоненты с заметно

различающейся молекулярной массой. Исключительную важность этот метод имеет для очистки лабильных биополимеров. Так, на препаративных колонках с TSK-гелями SWG за один ввод можно очистить 100–200 мг ферментов. Разработана технология приготовления высокоэффективных препаративных колонок для эксклюзионной хроматографии синтетических полимеров. Это позволило решить одну из наиболее трудных проблем исследования полимеров – быстрое получение узких фракций, необходимых для исследовательских целей и для калибровки аналитических систем. Особенно важным является то обстоятельство, что этим методом можно фракционировать практически любые полимеры, в то время как классические методы фракционирования не только несоизмеримо более трудоемки, но и малопригодны для разделения многих объектов, в частности, образцов с молекулярной массой до 10 000 – 30000.

Очень интересно - Реферат: Витамин С

Следует отметить, что при разделении синтетических полимеров нельзя сильно перегружать колонку. За счет вязкостного эффекта наблюдается сильное смещение удерживаемых объемов, что резко ухудшает качество получаемых фракций. Тем не менее производительность процесса достаточно высока. Так, при препаративном разделении на колонке размером 250х21,5 мм с зорбаксом-сил эффективностью около 10000 т.т. при единовременном вводе 200 мг образца сополимера этилена с винилацетатом (объем дозы 8 мл, концентрация 2,5%) разделение заканчивалось за 5 мин при скорости подвижной фазы (тетрагидрофуран) 16 мл/мин. Такая скорость разделения позволила за рабочий день фракционировать 8 г сополимера даже без применения автоматического дозатора с ручным отбором фракций каждые 20 с. Характеристики полученных фракций представлены в табл. 3.1.

Эти результаты показывают, что в выбранных условиях удалось получить весьма узкие фракции сополимера с молекулярной массой более 3000. Две последние фракции асимметричны и имеют заметно большую полидисперсность за счет присутствия продуктов с более высокой молекулярной массой, сильнее адсорбирующихся на силикагеле.

Чтобы полностью избежать проявления адсорбционных эффектов, разделение нужно проводить на колонках с полужесткими гелями.

Таблица 1. Характеристики узких фракций сополимера этилена с винилацетатом

№ фракции Мω Мn Mω/Mn
Исходный образец 6300 2700 2,33
2 10700 9300 1,15
3 6600 5600 1,18
4 3600 2950 1,22
5 2000 1450 1,38
6 1650 800 2,06

Микроколоночная ВЭЖХ

Вам будет интересно - Реферат: Нестероидные противовоспалительные препараты. Салицилаты

Среди специалистов до настоящего времени идут споры о том, какую хроматографию следует считать микроколоночной. какую обычной аналитической, но в меньшем масштабе [57, 58]. Если жидкостная хроматография с использованием поверхностно-пористых (пелликулярных) сорбентов осуществляется на колонках диаметром около 2 мм и даже 1 мм и длиной до нескольких метров, можно ли считать ее микроколоночной ВЭЖХ или нет? Можно ли отнести к области современной микроколоночной хроматографией ранние работы с использованием заполненных микрочастицами размером 5 и 10 мкм тефлоновых колонок, эффективность которых 500 – 1500 т.т.?

Представляется целесообразным считать, что современная микроколоночная ВЭЖХ возникла около 8 лет назад и признаками ее появления в окончательно сформированном виде следует считать, во-первых, разработку технологии заполнения высокоэффективных колонок диаметром 2 и 1 мм, объемом от 50 до 800 мкл и имеющих приведенную ВЭТТ от 2 до 5, т.е. такую же, как у современных аналитических колонок, с микрочастицами размером 3, 5, 7 и 10 мкм (до 20 мкм), во-вторых, создание, разработку и серийный выпуск как специально разработанных узлов, так и хроматографов для микроколоночной ВЭЖХ. Достигнутая степень миниатюризации ВЭЖХ с колонками диаметром 1 мм уже позволила широко ввести этот метод в практику и оценить получаемые преимущества резкое снижение расхода растворителя и сорбента (в 15–25 раз), повышение чувствительности метода и снижение определяемого минимума вещества в пробе (в 15–25 раз). Это существенно ускорило внедрение жидкостной хроматографии в биологию, биотехнологию, медицину.

Проводимые работы по развитию микроколоночной ВЭЖХ, направленные на дальнейшую миниатюризацию колонок, очевидно, являются перспективными и нужными, однако их освоение и внедрение в практику в большой мере сдерживается техническими трудностями. Описаны капиллярные колонки для ВЭЖХ с внутренним диаметром около 5 и 10 мкм, в том числе и с привитыми фазами, позволившие получить эффективность до нескольких миллионов т.т.; описаны колонки с привитыми сорбентами, имеющие внутренний диаметр около 30–50 мкм, также позволившие получить эффективность около миллиона т.т. Однако ввод проб в такие колонки, особенно количественный, стабильная подача растворителей с расходом 0,01–1 мкл/мин при давлениях 10–40 МПа, наконец, создание детекторов с объемом кюветы в 1–20 нл, дающих высокую чувствительность, – все это только часть серьезных проблем, решить которые предстоит в дальнейшем. Сейчас можно предсказать, что в ближайшие 5–10 лет микроколоночные хроматографы с колонками диаметром 0,2–2 мм найдут самое широкое применение в аналитической практике, хотя и не станут наиболее массовыми.

Каковы же основные отличия аппаратуры для микроколоночной ВЭЖХ от обычной? Насос должен стабильно подавать растворитель при высоких давлениях (5–40 МПа) и небольших расходах (0,1–100 мкл/мин). Как правило, обычные насосы для ВЭЖХ либо не работают при таких параметрах, либо не обеспечивают стабильной подачи. Инжектор должен обеспечивать воспроизводимый ввод проб размером 0,1–1 мкл при высоких давлениях (до 40 МПа), что также не удается осуществить, используя старые петлевые инжекторы с петлями 10 мкл и более. Для соединения колонки с инжектором и детектором приходится идти либо на прямое соединение без использования капилляров, либо использовать капилляры с внутренним диаметром 50–150 мкм очень небольшой длины (2–5 см). Наконец, детектор должен иметь кювету очень малого объема (0,03–1 мкл), но обеспечивающую высокую чувствительность детектирования (для УФ детекторов длина оптического пути должна быть от 1 до 10 мм). Для градиентной микроколоночной ВЭЖХ дополнительно возникают трудности, связанные с микроподачей элюента в начале и конце градиента (от 1% обычного расхода для микроколонки) и созданием эффективного микросмесителя вместимостью от 1 до 20 мкл. Весьма проблематичным становится формирование градиента одним насосом и системой клапанов на стороне низкого давления, так как устройство такого типа с вместимостью 10–40 мкл (включая объемы клапанной системы, подводящих капилляров и поршневой камеры или камер насоса) очень трудно представить.

Какие основные проблемы в настоящее время существуют в микроколоночной хроматографии? Во-первых, это трудность приготовления высокоэффективных колонок с внутренним диаметром 0,5–2 мм с широким диапазоном сорбентов всех типов. Во-вторых, существует ограниченный круг детекторов с микрокюветами вместимостью 0,03–2 мкл, пригодных для работы с микроколонками, которые серийно производят в достаточно широком масштабе и по доступным ценам. Такими детекторами являются некоторые УФ-фотометры, спектрофотометры, флюоресцентные детекторы, электрохимические детекторы. Очень интересным и информативным является сочетание микроколоночной ВЭЖХ с хроматомасс-спектрометром, позволяющее существенно упростить проблему интерфейса для ряда применений, однако высокая стоимость такого детектора ограничивает его широкое применение. Разработка детекторов с лазерными источниками позволяет создать микрокюветы для рефрактометров и Других детекторов, однако стоимость таких детекторов достаточно высока. В-третьих, существуют психологические трудности и инерция производства, поддерживающие развитие традиционной ВЭЖХ и сдерживающие развитие микроколоночной.

Похожий материал - Реферат: Карбоновые кислоты. Уксусная кислота

Отечественный серийный микроколоночный хроматограф «Милихром» нашел широкое применение как в исследовательской работе, так и для контроля на производстве. Он имеет шприцевой насос вместимостью 2500 мкл, выполненный из упрочненного стекла, жидкость контактирует только с высокоинертными материалами: фторопластом, стеклом и танталом, что позволяет использовать высокоагрессивные растворители с и добавки. Насос рассчитан на давление 10 Мпа (До 1987 г. – 5 Мпа.) и диапазон подачи растворителя от 1 до 600 мкл/мин. Детектором служит сканирующий спектрофотометр с диапазоном длин волн 190 – 360 нм и временем сканирования от 0,15 с, что позволяет осуществлять сканирование в выбранном диапазоне длин волн в без остановки потока. Диапазон оптических плотностей детектора от 12,8 до 0,05 единиц адсорбции на всю шкалу в пересчете на длину оптического пути 10 мм. Микрокювета детектора имеет вместимость 1,5 мкл при длине оптического пути 1,5 мм. Оригинально выполнен узел ввода пробы: набор пробы от 0,1 мкл и более осуществляется засасыванием пробы в иглу путем регулируемого хода шагового двигателя, управляющего насосом. Игла с пробой далее уплотняется путем обжимания фторопластового конуса вплотную к верхнему фильтру колонки, и при пуске насоса проба без размывания подается через иглу в колонку; тем же путем подается растворитель, промывающий иглу и элюирующий пробу. Таким образом, ввод пробы осуществляется без использования микрошприца, при этом удается исключить ошибки, связанные с плохой промывкой шприца от предыдущей пробы и характерные для начинающего и малоопытного оператора.

В хроматографе предусмотрено использование колонок двух типов: стеклянных с внутренним диаметром 1–1,5 мм, рассчитанных на работу при давлении до 1,5 МПа и создание полностью инертной хроматографической системы, и из нержавеющей стали длиной 60 и 120 мм с внутренним диаметром 2 мм. Все соединительные линии в хроматографе выполнены из толстостенных фторопластовых капилляров, на конце имеющих развальцовку, по которой и производится уплотнение; при низком давлении используются капилляры из полиэтилена. Шприцевой насос «Милихром» имеет привод от шагового двигателя, что позволяет не только обеспечить высокую воспроизводимость времени удерживания и количества вводимой пробы, но и формировать при необходимости в камере насоса градиент растворителя заданной формы и осуществлять градиентное элюирование сложных по составу смесей веществ. Предусмотрена также работа «Милихрома» с микроколлектоPOM фракций, обеспечивающим сбор микрофракций для последующей идентификации другими физико-химическими методами.

Серийно выпускают хроматографы, предназначенные для микроколоночной ВЭЖХ, различные зарубежные фирмы. Следует отметить микроколоночный хроматограф «Фэмилик 300 С» фирмы «Джаско», имеющий трехплунжерный насос, микроинжектор вместимостью 1 и 3 мкл, спектрофотометр «Увидек 100 V» с кюветой вместимостью 1 мкл при 5 мм длины оптического пути и флюориметрический детектор с кюветой вместимостью 2 мкл. Эта фирма имеет большой опыт в производстве микроколоночных хроматографов, так как она выпустила в продажу первый микроколоночный хроматограф «Фэмилик 100» в 1976 г. Интересен микроколоночный хроматограф фирмы «Иско», имеющий шприцевой насос вместимостью 50 мл и давлением 70 МПа с подачей растворителя от 0,02 до 600 мкл/мин, микроинжектор вместимостью 0,1 мкл и спектрофотометрический детектор с кюветами разной вместимости и длины оптического пути от 0,5 мкл и 10 мм до 0,03 мкл и 1 мм. Градиентную микроколоночную систему с двумя шприцевыми насосами выпустила фирма «Броунли Лабс»; систему с двумя и тремя растворителями предлагает фирма «Хьюлетт-Пакард». Набор гибких микроколоночных хроматографов разработан фирмой «Жилсон» – от простейшего изократического с подачей растворителя от 0,5 мкл/мин при 42 МПа, с микроинжектором на 1 мкл и УФ-детектором на 254 и 280 нм с микрокюветой 1,3 мкл при 5 мм до градиентного хроматографа, имеющего в качестве детектора спектрофотометр с такой же микрокюветой или флюориметрический детектор с микрокюветой. Широкий набор спектрофотометров с микрокюветами вместимостью 0,5 мкл при 1 мм длины оптического пути выпускает фирма «Кратос»; она же выпускает флюориметрические детекторы с микрокюветами. Изократические хроматографы для микроколоночной ВЭЖХ выпускают фирмы «Шимадзу», «Кнауэр», «ЛК.Б», «Байо-Рэд», «Вариан», «Лаборатори Дэйта Контрол» и др.

Большой интерес представляет сочетание микроколоночной ВЭЖХ с масс-спектрометрией. Известно, что присутствие больших количеств растворителя в элюенте, выходящем из хроматографической колонки обычного размера (4,6 мм Х 250 мм), обусловливает создание достаточно сложного и дорогого интерфейса. Этот интерфейс предназначен для удаления растворителя и транспортировки проб в ионизационную камеру масс-спектрометра. Если сечение хроматографической колонки уменьшается, как в микроколоночной ВЭЖХ, в 25–100 раз, т.е. если используют колонки диаметром от 0,5 до 1 мм, мощности насосов масс-спектрометра хватает для удаления растворителя и поддержания высокого вакуума в ионизационной камере, и необходимость в интерфейсе отпадает. Следует отметить, однако, что еще не решен ряд проблем при прямой стыковке микроколонки и масс-спектрометра, таких, как удаление солей из элюента при использовании буферных систем растворителей, резкое снижение температуры на конце микроколонки из-за интенсивного съема тепла при испарении растворителя и др.

К-во Просмотров: 97