Реферат: Методы приобретения знаний в интеллектуальных системах

Введение.

Инженерия знаний – это область информационной технологий, цель которой – накапливать и применять знания, не как объект обработки их человеком, но как объект для обработки их на компьютере. Для этого необходимо проанализировать знания и особенности их обработки человеком и компьютером, а также разработать их машинное представление. К сожалению точного и неоспоримого определения, что собой представляют знания, до сих пор не дано. Но тем не менее цель инженерии знаний – обеспечить использование знаний в компьютерных системах на более высоком уровне, чем до сих пор – актуальна. Но следует заметить, что возможность использования знаний осуществима только тогда, когда эти знания существуют, что вполне объяснимо. Технология накопления и суммирования знаний идет бок о бок с технологией использования знаний, они взаимно дополняют друг друга и ведут к созданию одной технологии, технологии обработки знаний.

В данной работе я постарался описать методы решения одной из проблем данного комплекса – это проблемы приобретения знаний, или говоря другими словами – обучения.

Методы приобретения знаний.

Приобретение знаний реализуется с помощью двух функций: получения информации извне и ее система­тизации. При этом в зависимости от способности си­стемы обучения к логическим выводам возможны различные формы приобретения знаний, а также раз­личные формы получаемой информации. Форма пред­ставления знаний для их использования определяется внутри системы, поэтому форма информации, которую она может принимать, зависит от того, какие спо­собности имеет система для формализации информа­ции до уровня знаний. Если обучающаяся система со­всем лишена такой способности, то человек должен заранее подготовить все, вплоть до формализации информации, т. е. чем выше способности машины к логическим выводам, тем меньше нагрузка на че­ловека.

Функции, необходимые обучающейся системе для приобретения знаний, различаются в зависимости от конфигурации системы. В дальнейшем при рассмот­рении систем инженерии знаний предполагается, что Существует система с конфигурацией, показанной на рис, 1.1, которая включает базу знаний и механизм логических выводов, использующий эти знания при решении задач. Если база знаний пополняется зна­ниями о стандартной форме их представления, то этими знаниями также можно воспользоваться. Сле­довательно, от функций обучения требуется преобра­зование полученной извне информации в знания и пополнение ими базы знаний.

Возможно вы искали - Реферат: Тестирование ППП автоматизации учета основных средств


Рис.1 Базовая структура систем обработки знаний

Можно предложить следующую классификацию систем приобретения знаний, которая будет опираться на способность системы к восприятию знаний в разных форматах, качественно различающихся между собой и способностью к формализации (рис 2).


Рис 2.Классификация методов приобретения знаний.

Похожий материал - Реферат: Ноутбук

Обучение без выводов.

Категорию А можно назвать обучением без выводов или механическим запоминанием, это простой процесс получения информации, при котором необяза­тельны функции выводов, а полученная информация в виде программ или данных используется для реше­ния задач в неизменном виде. Другими словами, это способ получения информации, характерный для су­ществующих компьютеров.

Категория Б—это получение информации извне, представленной в форме знаний, т. е. В форме, кото­рую можно использовать для выводов. Обучающейся Системе необходимо иметь функцию преобразования входной информации в формат, удобный для даль­нейшего использования и включения в базу знании.

Приобретение знаний на этом этапе происходит в наиболее простой форме: это знания, предварительно подготовленные человеком во внутреннем формате, какими являются большинство специальных знании, изначально заданных в экспертных системах. В слу­чае прикладных систем инженерии знаний необходи­мо преобразовать специальные знания из какой-либо области в машинный формат, но для этого нужен посредник, хорошо знающий как проблемную об­ласть, так и инженерию знаний. Таких посредников называют инженерами по знаниям. В общем случае для замены функции посредника можно использовать и специальные подпрограммы. Т.е. необходимо иметь функции выводов достаточно высокого уровня, но можно ограничиться и выводами на сравнительно низком уровне, а остальное доверить человеку — в этом и состоит приобретение знаний в диалоге. При­мером служит хорошо известная система TEIRESIAS. Это система-консультант в области медицины, разра­ботанная на базе системы MYCIN. Специалисты в проблемной области являются преподавателями обучающейся системы, а ученик — система инженерии знаний — изучает ответы на поставленные задачи и корректирует те правила в базе знаний, которые ра­нее приводили к ошибкам. Для подготовки знаний в экспертной системе необходимы вспомогательные средства типа редактора знаний, причем в процессе приобретения знаний в диалоге не только редактируются отдельные правила и факты, но и воспол­няются недостатки существующих правил, т. е. ведется редактирование базы знаний.

Очень интересно - Курсовая работа: Проектування друкованих плат в САПР P-CAD 2000

Если знания заданы во внешнем формате, например на естественном языке, то следует преобразовать их во внутренний формат. Для этого необходимо по­нимать внешнее представление, т. е. естественный язык, графические данные и т. п. Фактически приобретение знаний и их понимание тесно связаны. Проб­лема понимания сводится не только к преобразованию структуры предложений — необходимо получить фор­мат, удобный для применения.

Аналогичная проблема — преобразование во внутренний формат советов, подсказок по решению задач, что называется «операционализацией» знаний В этом заключается центральная проблема искус­ственного интеллекта; она, в частности, изучает пре­образование советов, подсказок, представленных в терминах проблемной области, в процедуры. Напри­мер, система UNDERSTAND выполняет операционализацию представления задачи о ханойской башне на английском языке путем построения соответствующих состояний и операций, приводящих к этим состоя* киям.

Приобретение знаний на метауровне

Выше было рассмотрено обучение на объектном уровне, а еще более сложная проблема - приобре­тение знаний на метауровне, т. е. знаний, основой которых является информация по управлению реше­нием задач с использованием знаний на объектном уровне. Для знаний на метауровне пока не установ­лены ни формы представления и использования, ни связь со знаниями на объектном уровне, ни другая техника их систематизации. Поскольку не определена форма их представления с точки зрения ис­пользования, то трудно говорить о приобретении знаний на метауровне. Тем не менее с этой пробле­мой связаны многие надежды в инженерии знаний,
Приобретение знаний из примеров

Метод приобретение знаний из примеров отличается от предыдущего метода, тем , что здесь выполняется сбор отдельных фактов, их преобразование и обобщение, а только затем они будут использованы в качестве знаний. И соответственно от уровня сложности системы вывода в системе будут возникать разные по степени общности и сложности знания. Необходимо также упомянуть о том, что этот метод приобретения знаний почти не нашёл практического применения, это может быть связано с тем, что входная информация представляет собой не систематизированный набор данных и для их обработки требуется наличие в системе обширных знаний по конкретной области.

Вам будет интересно - Курсовая работа: Перспективы развития технологий ПК на примере PDA (Personal Digital Assistant)

По сравнению с предыдущим методом приобретения знаний, этот метод имеет большую степень свободы и соответственно необходимо описать общие положения этого принципа.

1. Языки представления . Обучение по примерам — это процесс сбора отдельных фактов, их обобщение и систематизация, поэтому необходим унифицирован­ный язык представления примеров и общих правил. Эти правила, будучи результатом обучения, должны стать объектами для использования знаний, поэтому и образуют язык представления знаний. И наоборот, язык представления знаний должен учитывать и определять указанные выше условия приобретения знаний.

2. Способы описания объектов. В случае обучения .по примерам из описаний отдельных объектов созда­ются еще более общие описания объектов некоторого класса, при этом возникает важная проблема: как описать данный класс объектов. В полном классе некоторых объектов следует определить меньший класс объектов, обладающих общим свойством (объ­екты только в этом классе обладают заданным свойством), но в действительности проще опреде­лить список объектов и убедиться, что все объекты в нем обладают общим свойством. Для некоторо­го типа задач можно эффективно использовать лож­ные примеры или контрпримеры, убедительно пока­зывающие, что данные объекты не входят в этот класс.. Иллюстрацией применения контр­примеров может служить понятие «почти то».

3. Правила обобщения. Для сбора отдельных приме­ров и создания общих правил необходимы правила обобщения. Предложено несколько способов их опи­сания: замена постоянных атрибутов языка на пере­менные, исключение описаний с ограниченным при­менением и т. п. Очевидно, что эти способы тесно свя­заны с языком представления знаний.

4. Управление обучением. В процессе обучения по примерам можно применять различные стратегии структуризации информации и необходимо управлять этим процессом в ответ на входные данные. Сущест­вуют два классических метода: метод «снизу-вверх», при .котором, последовательно выбираются и структу­рируются отдельные сообщения, и метод «сверху-вниз», при котором сначала выдвигается гипотеза, а затем она корректируется по мере поступления инфор­мации. На практике эти методы комбинируются, хотя управление обучением с максимальным эффектом не такая уж простая проблема.

Похожий материал - Лабораторная работа: Технологія SOAP

При изучении метода приобретения знаний по примерам можно выделить следующий ряд методов:

1. Параметрическое обучение

2. Обучение по аналогии

3. Обучение по индукции.

К-во Просмотров: 44